博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Storm Topology及分组原理
阅读量:5820 次
发布时间:2019-06-18

本文共 3028 字,大约阅读时间需要 10 分钟。

Storm的通信机制,需要满足如下一些条件以满足Storm的语义。

1、建立数据传输的缓冲区。在通信连接没有建立之前把发送的数据缓存起来。数据发送方可以在连接建立之前发送消息,而不需要等连接建立起来,可是的接收方是独立运行的。

2、在消息传输层保证消息最多只能发送一次,Storm系统有ACK机制,是的没有被发送成功的消息会被重发,若消息层面也重发,会导致消息发送多次。

这种消息机制由两个接口来定义,backtype.storm.messaging.IContext和backtype.storm.messaging.IConnection.

IContext负责客户端和服务器端建立的连接,主要有四个方法。

1、prepare(Map stormConf):总从Storm定义的prepare方法,可以接收storm的配置。

2、term():终止,方法会在worker卸载这个传输插件的时候调用,自定义实现时可以在这里释放占用的资源。

3、bind(String topologyId,int port):建立服务器端的连接。

4、connect(String stormId,String host,int port):建立一个客户端的连接。

IConnect定义了在IContext上发送、接收数据的接口。

1、recv(int flag):接收消息。

2、send(int taskId,byte[] payload):发送消息。

3、close():该连接关闭的时候调用,释放相关资源。

 

Topology原理整理

  从运行时Topology的实际执行过程角度,作业是由多个组件的实例,也即任务,按照构造时简历的逻辑顺序呢和配置的并发度,形成的数据流图结构。

  流(stream)是Storm中对传递的数据进行的抽象,流是时间上无限的数据项Tuple序列。Spout是Stream的源,为Topology从特定数据源获取数据项,并向作业中发射(emit)形成Stream。(项目中使用了kafkaspout,接收后进行数据校验再使用emit发送给bolt),bolt可以同时接受任意多个上游送达的Stream作为输入,进行数据的处理过程,也可以在bolt做完处理后执行(emit)发射新的Stream继续给下游的Bolt进行处理。

  Stream中的Tuple可以被指定结构,由一个或多个域(field)组成。Tuple的定义不必是严格统一的,而是可以在每个spout,bolt中定义。默认情况下Tuple可以包含基本类型,如integers、longs、shorts、bytes、strings、doubles、floats、booleans和byte arrays.

流组模式

1、Shuffle Grouping 随机分组

public void createTopology(TopologyBuilder builder){    kafkaSpout kafkaspout = getKafkaSpout(topicName);    //Topology中增加一个Spout    builder.setSpout(...)    //在Topology中增加一个Bolt,可设置并行度,以随机分组的方式发送,shuffleGrouping后的参数为源组建的Id    builder.setBolet(boltName,new BlackListBolt(),3).shuffleGrouping(spoutName); }

在这种流组模式下,源组件将其发送的数据项,以随机的方式向其所有目标组件发送,可以保证每个目标组件收到数量近似的Tuple。

2、All Grouping 副本分组

//allGrouping(java.lang.String componentId)//allGrouping(java.lang.String componentId,java.lang.String streamId)//参数streamId是声明的流的标识builder.setBolet(boltName,new BlackListBolt(),3).allGrouping(spoutName,"signals“);

在这种模式下,源组件将其发送的数据项,以副本的形式向其所有目标组件发送,可以保证每个目标组件均收到同一个Tuple,就好比zookeeper的配置文件同步一样,每个bolt都会收到同一份。

3、Global Grouping 全局分组

这种模式下,源组件将其发送的数据项,全部发送给目标组件的某一个实例,而且该实例是这个组件中ID最小的那个任务。可以保证所有数据项只会被目标组件的一份实例(一个bolt)所处理

builder.setBolet(boltName,new BlackListBolt(),3).globalGrouping(SpoutName);

4.Fiellds Grouping 按域分组

builder.setBolet(boltName,new BlackListBolt(),3).fieldsGrouping(spoutName,new Field("域名");

源组件将其发送的数据项,按Tuple中指定域的值分组,向下游目标组件发送,可以保证拥有相同域组合的值的Tuple,被发送给同一个Bolt.

5、Direct Grouping 直接分组

builder.setSpout("kafkaSpout",topicSpout)builder.setBolt(boltname1,new boltName1(),1).shuffleGrouping("kafkaSpout");//以直接分组的模式接收上述bolt发送的数据项builder.setBolt(boltname2,new boltname2(),2).directGrouping(boltname1);

源组件将其发送的数据项,以直接指定目标组件的方式发送,可以使指定组件接收给定的Tuple.需要注意的是,接收bolt的executle()函数中,哟啊使用emitDirect()替代emit,用于向指定的具名流中发送数据项

 

构建Topology

构建TopologyBuilder主要给出了三类方法:创建Topology、增加bolt和增加Spout的方法。setBolt和setSpout接口各有不同多种重载方法,均返回用于声明组件输入的对象。

1、id:组件(spout、Bolt)的标识,字符串类型,若需要引用该组件,就使用这里指定的标识ID。比如使用"kafkaSpout"

2、bolt:添加的bolt对象,再setBolt的重载方法中,存在IRichBolt和IBasicBolt两类bolt参数,项目中用到的是IRichBolt,区别在于,BasicBolt用于非聚集处理,能够自动进行(anchoring)和(acking)

3、spout:添加的Spout对象,在setSpout方法中该参数是IRichSpout类型的Spout接口。

4、parallelism_hint:并行度,数值型参数。设置组件运行时将要被分配的线程数量。

 

参考:《Storm 大数据流式计算及应用实践》

转载地址:http://uszdx.baihongyu.com/

你可能感兴趣的文章
html5纲要,细谈HTML 5新增的元素
查看>>
Android应用集成支付宝接口的简化
查看>>
[分享]Ubuntu12.04安装基础教程(图文)
查看>>
django 目录结构修改
查看>>
win8 关闭防火墙
查看>>
CSS——(2)与标准流盒模型
查看>>
MYSQL 基本SQL语句
查看>>
C#中的Marshal
查看>>
linux命令:ls
查看>>
Using RequireJS in AngularJS Applications
查看>>
hdu 2444(二分图最大匹配)
查看>>
【SAP HANA】关于SAP HANA中带层次结构的计算视图Cacultation View创建、激活状况下在系统中生成对象的研究...
查看>>
DevOps 前世今生 | mPaaS 线上直播 CodeHub #1 回顾
查看>>
iOS 解决UITabelView刷新闪动
查看>>
Web前端JQuery入门实战案例
查看>>
CentOS 7 装vim遇到的问题和解决方法
查看>>
JavaScript基础教程1-20160612
查看>>
iOS \U7ea2 乱码 转换
查看>>
FCN图像分割
查看>>
ios xmpp demo
查看>>